Skip to Content
Merck
  • Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes.

Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes.

Nature communications (2018-08-08)
Tzu-Chieh Lin, Monima Sarma, Yi-Ting Chen, Shih-Hung Liu, Ke-Ting Lin, Pin-Yi Chiang, Wei-Tsung Chuang, Yi-Chen Liu, Hsiu-Fu Hsu, Wen-Yi Hung, Wei-Chieh Tang, Ken-Tsung Wong, Pi-Tai Chou
ABSTRACT

The lack of structural information impeded the access of efficient luminescence for the exciplex type thermally activated delayed fluorescence (TADF). We report here the pump-probe Step-Scan Fourier transform infrared spectra of exciplex composed of a carbazole-based electron donor (CN-Cz2) and 1,3,5-triazine-based electron acceptor (PO-T2T) codeposited as the solid film that gives intermolecular charge transfer (CT), TADF, and record-high exciplex type cyan organic light emitting diodes (external quantum efficiency: 16%). The transient infrared spectral assignment to the CT state is unambiguous due to its distinction from the local excited state of either the donor or the acceptor chromophore. Importantly, a broad absorption band centered at ~2060 cm-1 was observed and assigned to a polaron-pair absorption. Time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original CN-Cz2:PO-T2T configuration within ~14 µs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
PO-T2T, >=99% (HPLC)
SKU
Pack Size
Availability
Price
Quantity