Skip to Content
Merck
  • Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism.

Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism.

Journal of the National Cancer Institute (2000-12-07)
B J Maurer, L Melton, C Billups, M C Cabot, C P Reynolds
ABSTRACT

We previously reported that N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) treatment caused large increases of ceramide levels in neuroblastoma cell lines and induced cell death by a combination of apoptosis and necrosis through p53 (also known as TP53)-independent and caspase-independent pathways. Our goal was to determine if several molecules that inhibit enzymes involved in ceramide metabolism-L-threo-dihydrosphingosine (safingol), d, l-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), and tamoxifen-enhanced 4-HPR-mediated cytotoxicity and/or affected ceramide levels. Cellular lipids were quantified by radiolabeling and thin-layer chromatography. Cytotoxicity and cytotoxic synergy (expressed as combination index, where combination index <1 indicates synergy and >1 indicates antagonism) were measured in cultured cancer cell lines with the use of a fluorescence-based assay of cell viability employing digital imaging microscopy. Statistical tests were two-sided. 4-HPR increased ceramide levels by de novo synthesis. Safingol (1-4 microM) was incorporated into a stereochemical variant of ceramide and synergized with a 3:1 molar ratio of 4-HPR (3-12 microM), to produce a 100-fold to 10 000-fold (2 to 4 logs) increase in cytotoxicity relative to 4-HPR alone in neuroblastoma (combination index <0.1), lung (combination index <0.1-0.2), melanoma (combination index <0.1-0.2), prostate (combination index <0.1-1.0), colon (combination index 0.1-0.3), breast (combination index = 0.1-0.5), and pancreas (combination index = 0.2) cell lines, including p53 mutant and alkylator-resistant cell lines. The 4-HPR and safingol combination was cytotoxic in low-oxygen conditions and was minimally toxic to normal fibroblasts and bone marrow myeloid progenitor cells. Addition of agents that retard ceramide glucosylation and/or acylation, such as PPMP or tamoxifen, to 4-HPR or to the combination of 4-HPR and safingol further increased cytotoxicity to tumor cells. Combinations of 4-HPR and modulators of ceramide metabolism may form the basis for a novel chemotherapy that is functional under hypoxic conditions (e.g., such as those within tumors) and is p53 independent and caspase independent.

MATERIALS
Product Number
Brand
Product Description

Avanti
D-threo-PPMP, Avanti Polar Lipids 870792P, powder