Saltar al contenido
Merck

Developmentally regulated alternative splicing is perturbed in type 1 diabetic skeletal muscle.

Muscle & nerve (2017-02-07)
Curtis A Nutter, Elizabeth Jaworski, Sunil K Verma, Yareli Perez-Carrasco, Muge N Kuyumcu-Martinez
RESUMEN

Type 1 diabetic patients can develop skeletal muscle weakness and atrophy by molecular mechanisms that are not well understood. Alternative splicing (AS) is critical for gene expression in the skeletal muscle, and its dysregulation is implicated in muscle weakness and atrophy. Therefore, we investigated whether AS patterns are affected in type 1 diabetic skeletal muscle contributing to skeletal muscle defects. AS patterns were determined by reverse transcription-polymerase chain reaction and levels of RNA binding proteins were assessed by Western blot in type 1 diabetic mouse skeletal muscle and during normal mouse skeletal muscle development. Five genes with critical functions in the skeletal muscle are misspliced in type 1 diabetic skeletal muscle, resembling their AS patterns at embryonic stages. AS of these genes undergoes dramatic transitions during skeletal muscle development, correlating with changes in specific RNA binding proteins. Embryonic spliced variants are inappropriately expressed in type 1 diabetic skeletal muscle. Muscle Nerve 56: 744-749, 2017.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-RBFOX1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-MBNL1 antibody produced in mouse, ~1 mg/mL, clone HL 1822 (3A4-1E9), purified immunoglobulin, buffered aqueous solution