Saltar al contenido
Merck

Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

Cell cycle (Georgetown, Tex.) (2017-05-06)
Yibo Li, Surya Amarachintha, Andrew F Wilson, Xue Li, Wei Du
RESUMEN

Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anticuerpo anti-fosfo-histona H2A.X (Ser139), clon JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Ribonucleasa A from bovine pancreas, for molecular biology, ≥70 Kunitz units/mg protein, lyophilized
Sigma-Aldrich
Anticuerpo anti-8-oxoguanina, clon 483,15, ascites fluid, clone 483.15, Chemicon®
Sigma-Aldrich
Anticuerpo anti-fosfo-histona H2A.X (Ser139), clon JBW301, conjugado con biotina, clone JBW301, Upstate®, from mouse