Saltar al contenido
Merck

Modulation of collagen metabolism by the nucleolar protein fibrillarin.

Experimental cell research (2001-11-08)
F Lefèvre, R Garnotel, N Georges, P Gillery
RESUMEN

Metabolic functions of fibroblasts are tightly regulated by the extracellular environment. When cultivated in tridimensional collagen lattices, fibroblasts exhibit a lowered activity of protein synthesis, especially concerning extracellular matrix proteins. We have previously shown that extracellular collagen impaired the processing of ribosomal RNA (rRNA) in nucleoli by generating changes in the expression of nucleolar proteins and a premature degradation of neosynthesized rRNA. In this study, we have investigated whether inhibiting the synthesis of fibrillarin, a major nucleolar protein with decreased expression in collagen lattices, could mimic the effects of extracellular matrix. Monolayer-cultured fibroblasts were transfected with anti-fibrillarin antisense oligodeoxynucleotides, which significantly decreased fibrillarin content. Downregulation of fibrillarin expression inhibited procollagen secretion into the extracellular medium, without altering total collagen production. No changes of pro1(I)collagen mRNA expression or proline hydroxylation were found. A concomitant intracellular retention of collagen and its chaperone protein HSP47 was found, but no effect on the production of other extracellular matrix macromolecules or remodelling enzymes was observed. These data show that collagen processing depends on unknown mechanisms, involving proteins primarily located in the nucleolar compartment with other demonstrated functions, and suggest specific links between nucleolar machinery and extracellular matrix.