Saltar al contenido
Merck

Phosphorylation of Ser-446 determines stability of MKP-7.

The Journal of biological chemistry (2005-02-04)
Chiaki Katagiri, Kouhei Masuda, Takeshi Urano, Katsumi Yamashita, Yoshio Araki, Kunimi Kikuchi, Hiroshi Shima
RESUMEN

MAPK cascades can be negatively regulated by members of the MAPK phosphatase (MKP) family. However, how MKP activity is regulated is not well characterized. MKP-7, a JNK-specific phosphatase, possesses a unique COOH-terminal stretch (CTS) in addition to domains conserved among MKP family members. The CTS contains several motifs such as a nuclear localization signal, a nuclear export signal, PEST sequences, and a serine residue (Ser-446) that can be phosphorylated by activated ERK, suggesting an important regulatory role(s).(35)S-pulse labeling experiments indicate that the half-life of MKP-7 is 1.5 h, a period significantly elongated by deleting the CTS. We also show that overexpressed MKP-7 is polyubiquitinated when co-expressed with ubiquitin and that proteasome inhibitors markedly inhibit MKP-7 degradation. We also determined that MKP-7 phosphorylated at Ser-446 has a longer half-life than unphosphorylated form of the wild type protein, as does a phospho-mimic mutant of MKP-7. These results indicate that activation of the ERK pathway strongly blocks JNK activation through stabilization of MKP-7 mediated by phosphorylation.