Saltar al contenido
Merck

Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens.

PLoS biology (2015-03-13)
Jenna Gallie, Eric Libby, Frederic Bertels, Philippe Remigi, Christian B Jendresen, Gayle C Ferguson, Nicolas Desprat, Marieke F Buffing, Uwe Sauer, Hubertus J E Beaumont, Jan Martinussen, Mogens Kilstrup, Paul B Rainey
RESUMEN

Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Uracil, ≥99.0%
Sigma-Aldrich
L-arginina monohydrochloride, not synthetic, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-arginina monohydrochloride, reagent grade, ≥98% (HPLC), powder
Sigma-Aldrich
L-arginina monohydrochloride, BioUltra, ≥99.5% (AT)
SAFC
L-arginina monohydrochloride
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Guanine hydrochloride, ≥99.0%
Supelco
L-arginina monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Uracil, Pharmaceutical Secondary Standard; Certified Reference Material
L-arginina monohydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Arginine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Supelco
L-arginina monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Fluorouracil impurity C, European Pharmacopoeia (EP) Reference Standard