Saltar al contenido
Merck
  • Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment.

Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment.

European cells & materials (2014-04-25)
S Lopa, A Colombini, D Stanco, L de Girolamo, V Sansone, M Moretti
RESUMEN

Cell-based therapies have recently been proposed for the treatment of degenerative articular pathologies, such as early osteoarthritis, with an emphasis on autologous mesenchymal stem cells (MSCs), as an alternative to terminally differentiated cells. In this study, we performed a donor-matched comparison between infrapatellar fat pad MSCs (IFP-MSCs) and knee subcutaneous adipose tissue stem cells (ASCs), as appealing candidates for cell-based therapies that are easily accessible during surgery. IFP-MSCs and ASCs were obtained from 25 osteoarthritic patients undergoing total knee replacement and compared for their immunophenotype and differentiative potential. Undifferentiated IFP-MSCs and ASCs displayed the same immunophenotype, typical of MSCs (CD13+/CD29+/CD44+/CD73+/CD90+/CD105+/CD166+/CD31-/CD45-). IFP-MSCs and ASCs showed similar adipogenic potential, though undifferentiated ASCs had higher LEP expression compared to IFP-MSCs (p<0.01). Higher levels of calcified matrix (p<0.05) and alkaline phosphatase (p<0.05) in ASCs highlighted their superior osteogenic commitment compared to IFP-MSCs. Conversely, IFP-MSCs pellets showed greater amounts of glycosaminoglycans (p<0.01) and superior expression of ACAN (p<0.001), SOX9, COMP (p<0.001) and COL2A1 (p<0.05) compared to ASCs pellets, revealing a superior chondrogenic potential. This was also supported by lower COL10A1 (p<0.05) and COL1A1 (p<0.01) expression and lower alkaline phosphatase release (p<0.05) by IFP-MSCs compared to ASCs. The observed dissimilarities between IFP-MSCs and ASCs show that, despite expressing similar surface markers, MSCs deriving from different fat depots in the same surgical site possess specific features. Furthermore, the in vitro peculiar commitment of IFP-MSCs and ASCs from osteoarthritic donors towards the chondrogenic or osteogenic lineage may suggest a preferential use for cartilage and bone cell-based treatments, respectively.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Hidróxido de sodio, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Hidróxido de sodio, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Hidróxido de sodio solution, 50% in H2O
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Azul de tripano solution, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Dexametasona, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
3-Isobutil-1-metilxantina, ≥99% (HPLC), powder
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Formaldehído solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Hidróxido de sodio solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Alcohol isopropílico, meets USP testing specifications
Sigma-Aldrich
L-Glutamina, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
SAFC
Formaldehído solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Hidróxido de sodio, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
L-cisteína, 97%
Sigma-Aldrich
Piruvato sódico, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%