Saltar al contenido
Merck
  • Application of engineered cytochrome P450 mutants as biocatalysts for the synthesis of benzylic and aromatic metabolites of fenamic acid NSAIDs.

Application of engineered cytochrome P450 mutants as biocatalysts for the synthesis of benzylic and aromatic metabolites of fenamic acid NSAIDs.

Bioorganic & medicinal chemistry (2014-07-08)
Harini Venkataraman, Marlies C A Verkade-Vreeker, Luigi Capoferri, Daan P Geerke, Nico P E Vermeulen, Jan N M Commandeur
RESUMEN

Cytochrome P450 BM3 mutants are promising biocatalysts for the production of drug metabolites. In the present study, the ability of cytochrome P450 BM3 mutants to produce oxidative metabolites of structurally related NSAIDs meclofenamic acid, mefenamic acid and tolfenamic acid was investigated. A library of engineered P450 BM3 mutants was screened with meclofenamic acid (1) to identify catalytically active and selective mutants. Three mono-hydroxylated metabolites were identified for 1. The hydroxylated products were confirmed by NMR analysis to be 3'-OH-methyl-meclofenamic acid (1a), 5-OH-meclofenamic acid (1b) and 4'-OH-meclofenamic acid (1c) which are human relevant metabolites. P450 BM3 variants containing V87I and V87F mutation showed high selectivity for benzylic and aromatic hydroxylation of 1 respectively. The applicability of these mutants to selectively hydroxylate structurally similar drugs such as mefenamic acid (2) and tolfenamic acid (3) was also investigated. The tested variants showed high total turnover numbers in the order of 4000-6000 and can be used as biocatalysts for preparative scale synthesis. Both 1 and 2 could undergo benzylic and aromatic hydroxylation by the P450 BM3 mutants, whereas 3 was hydroxylated only on aromatic rings. The P450 BM3 variant M11 V87F hydroxylated the aromatic ring at 4' position of all three drugs tested with high regioselectivity. Reference metabolites produced by P450 BM3 mutants allowed the characterisation of activity and regioselectivity of metabolism of all three NSAIDs by thirteen recombinant human P450s. In conclusion, engineered P450 BM3 mutants that are capable of benzylic or aromatic hydroxylation of fenamic acid containing NSAIDs, with high selectivity and turnover numbers have been identified. This shows their potential use as a greener alternative for the generation of drug metabolites.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Mefenamic acid
Sigma-Aldrich
Tolfenamic acid, NSAID
Supelco
Mefenamic acid, analytical standard
Supelco
Tolfenamic acid, VETRANAL®, analytical standard
Mefenamic acid, European Pharmacopoeia (EP) Reference Standard
Tolfenamic acid, European Pharmacopoeia (EP) Reference Standard