- Bond-order discrimination by atomic force microscopy.
Bond-order discrimination by atomic force microscopy.
Science (New York, N.Y.) (2012-09-18)
Leo Gross, Fabian Mohn, Nikolaj Moll, Bruno Schuler, Alejandro Criado, Enrique Guitián, Diego Peña, André Gourdon, Gerhard Meyer
PMID22984067
RESUMEN
We show that the different bond orders of individual carbon-carbon bonds in polycyclic aromatic hydrocarbons and fullerenes can be distinguished by noncontact atomic force microscopy (AFM) with a carbon monoxide (CO)-functionalized tip. We found two different contrast mechanisms, which were corroborated by density functional theory calculations: The greater electron density in bonds of higher bond order led to a stronger Pauli repulsion, which enhanced the brightness of these bonds in high-resolution AFM images. The apparent bond length in the AFM images decreased with increasing bond order because of tilting of the CO molecule at the tip apex.