Saltar al contenido
Merck

TDP1-independent pathways in the process and repair of TOP1-induced DNA damage.

Nature communications (2022-07-23)
Huimin Zhang, Yun Xiong, Dan Su, Chao Wang, Mrinal Srivastava, Mengfan Tang, Xu Feng, Min Huang, Zhen Chen, Junjie Chen
RESUMEN

Anticancer drugs, such as camptothecin (CPT), trap topoisomerase I (TOP1) on DNA and form TOP1 cleavage complexes (TOP1cc). Alternative repair pathways have been suggested in the repair of TOP1cc. However, how these pathways work with TDP1, a key repair enzyme that specifically hydrolyze the covalent bond between TOP1 catalytic tyrosine and the 3'-end of DNA and contribute to the repair of TOP1cc is poorly understood. Here, using unbiased whole-genome CRISPR screens and generation of co-deficient cells with TDP1 and other genes, we demonstrate that MUS81 is an important factor that mediates the generation of excess double-strand breaks (DSBs) in TDP1 KO cells. APEX1/2 are synthetic lethal with TDP1. However, deficiency of APEX1/2 does not reduce DSB formation in TDP1 KO cells. Together, our data suggest that TOP1cc can be either resolved directly by TDP1 or be converted into DSBs and repaired further by the Homologous Recombination (HR) pathway.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-fosfo-histona H2A.X (Ser139), clon JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Anti-vinculina monoclonal antibody produced in mouse, clone hVIN-1, ascites fluid
Sigma-Aldrich
Anticuerpo anti-complejos covalentes topoisomerasa I-ADN, clon 1,1A, clone 1.1A, from mouse