Saltar al contenido
Merck

Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy.

Clinical cancer research : an official journal of the American Association for Cancer Research (2009-01-02)
Ying Dong, Shook-Fong Chin, Elvin Blanco, Erik A Bey, Wareef Kabbani, Xian-Jin Xie, William G Bornmann, David A Boothman, Jinming Gao
RESUMEN

beta-Lapachone (ARQ 501, a formulation of beta-lapachone complexed with hydroxypropyl-beta-cyclodextrin) is a novel anticancer agent with selectivity against prostate cancer cells overexpressing the NAD(P)H:quinone oxidoreductase-1 enzyme. Lack of solubility and an efficient drug delivery strategy limits this compound in clinical applications. In this study, we aimed to develop beta-lapachone-containing polymer implants (millirods) for direct implantation into prostate tumors to test the hypothesis that the combination of a tumor-specific anticancer agent with site-specific release of the agent will lead to significant antitumor efficacy. Survival assays in vitro were used to test the killing effect of beta-lapachone in different prostate cancer cells. beta-Lapachone release kinetics from millirods was determined in vitro and in vivo. PC-3 prostate tumor xenografts in athymic nude mice were used for antitumor efficacy studies in vivo. beta-Lapachone killed three different prostate cancer cell lines in an NAD(P)H:quinone oxidoreductase-1-dependent manner. Upon incorporation of solid-state inclusion complexes of beta-lapachone with hydroxypropyl-beta-cyclodextrin into poly(D,L-lactide-co-glycolide) millirods, beta-lapachone release kinetics in vivo showed a burst release of approximately 0.5 mg within 12 hours and a subsequently sustained release of the drug ( approximately 0.4 mg/kg/d) comparable with that observed in vitro. Antitumor efficacy studies showed significant tumor growth inhibition by beta-lapachone millirods compared with controls (P < 0.0001; n = 10 per group). Kaplan-Meier survival curves showed that tumor-bearing mice treated with beta-lapachone millirods survived nearly 2-fold longer than controls, without observable systemic toxicity. Intratumoral delivery of beta-lapachone using polymer millirods showed the promising therapeutic potential for human prostate tumors.