Saltar al contenido
Merck

Mechanochemical Preparations of Anion Coordinated Architectures Based on 3-Iodoethynylpyridine and 3-Iodoethynylbenzoic Acid.

ChemistryOpen (2019-11-07)
Vincent M Morin, Patrick M J Szell, Estelle Caron-Poulin, Bulat Gabidullin, David L Bryce
RESUMEN

The halogen bond has previously been explored as a versatile tool in crystal engineering and anion coordination chemistry, with mechanochemical synthetic techniques having been shown to provide convenient routes towards cocrystals. In an effort to expand our knowledge on the role of halogen bonding in anion coordination, here we explore a series of cocrystals formed between 3-iodoethynylpyridine and 3-iodoethynylbenzoic acid with halide salts. In total, we report the single-crystal X-ray structures of six new cocrystals prepared by mechanochemical ball milling, with all structures exhibiting C≡C-I⋅⋅⋅X- (X=Cl, Br) halogen bonds. Whereas cocrystals featuring a pyridine group favoured the formation of discrete entities, cocrystals featuring a benzoic acid group yielded an alternation of halogen and hydrogen bonds. The compounds studied herein were further characterized by 13C and 31P solid-state nuclear magnetic resonance, with the chemical shifts offering a clear and convenient method of identifying the occurrence of halogen bonding, using the crude product obtained directly from the mechanochemical ball milling. Whereas the 31P chemical shifts were quickly able to identify the occurrence of cocrystallization, 13C solid-state NMR was diagnostic of both the occurrence of halogen bonding and of hydrogen bonding.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
tert-Butyl hydroperoxide solution, 70 wt. % in H2O
Sigma-Aldrich
Ethyltriphenylphosphonium bromide, 99%
Sigma-Aldrich
3-Ethynylpyridine, 98%
Sigma-Aldrich
3-Ethynylbenzoic acid, 95%
Sigma-Aldrich
Propyltriphenylphosphonium bromide, 98%
Sigma-Aldrich
Allyl methyl sulfone, 96%