Saltar al contenido
Merck

Graded Ca²⁺/calmodulin-dependent coupling of voltage-gated CaV1.2 channels.

eLife (2015-02-26)
Rose E Dixon, Claudia M Moreno, Can Yuan, Ximena Opitz-Araya, Marc D Binder, Manuel F Navedo, Luis F Santana
RESUMEN

In the heart, reliable activation of Ca(2+) release from the sarcoplasmic reticulum during the plateau of the ventricular action potential requires synchronous opening of multiple CaV1.2 channels. Yet the mechanisms that coordinate this simultaneous opening during every heartbeat are unclear. Here, we demonstrate that CaV1.2 channels form clusters that undergo dynamic, reciprocal, allosteric interactions. This 'functional coupling' facilitates Ca(2+) influx by increasing activation of adjoined channels and occurs through C-terminal-to-C-terminal interactions. These interactions are initiated by binding of incoming Ca(2+) to calmodulin (CaM) and proceed through Ca(2+)/CaM binding to the CaV1.2 pre-IQ domain. Coupling fades as [Ca(2+)]i decreases, but persists longer than the current that evoked it, providing evidence for 'molecular memory'. Our findings suggest a model for CaV1.2 channel gating and Ca(2+)-influx amplification that unifies diverse observations about Ca(2+) signaling in the heart, and challenges the long-held view that voltage-gated channels open and close independently.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Avanti
Brain PI(4,5)P2, Avanti Research - A Croda Brand
Avanti
Cerebro PI(4,5)P2, Avanti Research - A Croda Brand