Saltar al contenido
Merck
  • Inhibition of human glioblastoma cell adhesion and invasion by 4-(4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) and 4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154).

Inhibition of human glioblastoma cell adhesion and invasion by 4-(4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) and 4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154).

Clinical cancer research : an official journal of the American Association for Cancer Research (1998-10-31)
R K Narla, X P Liu, D Klis, F M Uckun
RESUMEN

Glioblastoma multiforme is a highly invasive primary brain tumor with a disappointingly high local recurrence rate and mortality despite intensive multimodality treatment programs. Therefore, new agents that are capable of inhibiting the infiltration of normal brain parenchyma by glioblastoma cells are urgently needed. Here, we show that the novel quinazoline derivatives 4-(4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) and 4-(3'-bromo-4'hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154) are potent inhibitors of glioblastoma cell adhesion and migration. Specifically, both compounds inhibited at micromolar concentrations: (a) integrin-mediated glioblastoma cell adhesion to the extracellular matrix proteins laminin, type IV collagen, and fibronectin; (b) integrin-independent epidermal growth factor-induced adhesion of glioblastoma cells to poly-L-lysine-coated tissue culture plates; (c) fetal bovine serum-induced polymerization of actin and actin stress fiber formation as well epidermal growth factor-stimulated formation of focal adhesion plaques in serum-starved glioblastoma cells; and most importantly, (d) glioblastoma cell migration in in vitro assays of tumor cell invasiveness using tumor cell spheroids and/or Matrigel-coated Boyden chambers. Further preclinical development of WHI-P131 and WHI-P154 may provide the basis for the design of more effective adjuvant chemotherapy programs for glioblastoma multiforme.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
JAK3 Inhibitor II, The JAK3 Inhibitor II, also referenced under CAS 211555-04-3, controls the biological activity of JAK3. This small molecule/inhibitor is primarily used for Phosphorylation & Dephosphorylation applications.