Saltar al contenido
Merck

Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa.

The Indian journal of medical research (2018-07-13)
Jingming Zhao, Wei Cheng, Xigang He, Yanli Liu, Ji Li, Jiaxing Sun, Jinfeng Li, Fangfang Wang, Yufang Gao
RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial bloodstream infections in humans. This study was aimed to explore the association of furanone C-30 with biofilm formation, quorum sensing (QS) system and antibiotic resistance in P. aeruginosa. An in vitro model of P. aeruginosa bacterial biofilm was established using the standard P. aeruginosa strain (PAO-1). After treatment with 2.5 and 5 μg/ml of furanone C-30, the change of biofilm morphology of PAO-1 was observed, and the expression levels of QS-regulated virulence genes (lasB, rhlA and phzA2), QS receptor genes (lasR, rhlR and pqsR) as well as QS signal molecule synthase genes (lasI, rhlI, pqsE and pqsH) were determined. Besides, the AmpC expression was quantified in planktonic and mature biofilm induced by antibiotics. Furanone C-30 treatment significantly inhibited biofilm formation in a dose-dependent manner. With the increase of furanone C-30 concentration, the expression levels of lasB, rhlA, phzA2, pqsR, lasI, rhlI pqsE and pqsH significantly decreased in mature biofilm bacteria while the expression levels of lasR and rhlR markedly increased. The AmpC expression was significantly decreased in both planktonic and biofilm bacteria induced by imipenem and ceftazidime. Furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa through regulating QS genes. The inhibitory effect of furanone C-30 on las system appeared to be stronger than that on rhl system. Further studies need to be done with different strains of P. aeruginosa to confirm our findings.