Skip to Content
Merck
  • A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface.

A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface.

Journal of cell science (2017-08-05)
Sarah E Stewart, Sam A Menzies, Stephanie J Popa, Natalia Savinykh, Anna Petrunkina Harrison, Paul J Lehner, Kevin Moreau
ABSTRACT

Galectins are a family of lectin binding proteins expressed both intracellularly and extracellularly. Galectin-3 (Gal-3, also known as LGALS3) is expressed at the cell surface; however, Gal-3 lacks a signal sequence, and the mechanism of Gal-3 transport to the cell surface remains poorly understood. Here, using a genome-wide CRISPR/Cas9 forward genetic screen for regulators of Gal-3 cell surface localization, we identified genes encoding glycoproteins, enzymes involved in N-linked glycosylation, regulators of ER-Golgi trafficking and proteins involved in immunity. The results of this screening approach led us to address the controversial role of N-linked glycosylation in the transport of Gal-3 to the cell surface. We find that N-linked glycoprotein maturation is not required for Gal-3 transport from the cytosol to the extracellular space, but is important for cell surface binding. Additionally, secreted Gal-3 is predominantly free and not packaged into extracellular vesicles. These data support a secretion pathway independent of N-linked glycoproteins and extracellular vesicles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human GORASP2
Sigma-Aldrich
CRISPR/Cas9 Products and Services, Design and order CRISPR gRNA, Cas9, screening libraries, controls and companion products. Formats include plant, lentivirus, IVT-RNA, plasmid, synthetic, and protein.
Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution