Skip to Content
Merck
  • Calcium Signaling Is Dispensable for Receptor Regulation of Endothelial Barrier Function.

Calcium Signaling Is Dispensable for Receptor Regulation of Endothelial Barrier Function.

The Journal of biological chemistry (2016-10-30)
Judith A Stolwijk, Xuexin Zhang, Maxime Gueguinou, Wei Zhang, Khalid Matrougui, Christian Renken, Mohamed Trebak
ABSTRACT

Endothelial barrier function is tightly regulated by plasma membrane receptors and is crucial for tissue fluid homeostasis; its dysfunction causes disease, including sepsis and inflammation. The ubiquitous activation of Ca2+ signaling upon phospholipase C-coupled receptor ligation leads quite naturally to the assumption that Ca2+ signaling is required for receptor-regulated endothelial barrier function. This widespread hypothesis draws analogy from smooth muscle and proposes the requirement of G protein-coupled receptor (GPCR)-generated Ca2+ signaling in activating the endothelial contractile apparatus and generating interendothelial gaps. Notwithstanding endothelia being non-excitable in nature, the hypothesis of Ca2+-induced endothelial contraction has been invoked to explain actions of GPCR agonists that either disrupt or stabilize endothelial barrier function. Here, we challenge this correlative hypothesis by showing a lack of causal link between GPCR-generated Ca2+ signaling and changes in human microvascular endothelial barrier function. We used three endogenous GPCR agonists: thrombin and histamine, which disrupt endothelial barrier function, and sphingosine-1-phosphate, which stabilizes barrier function. The qualitatively different effects of these three agonists on endothelial barrier function occur independently of Ca2+ entry through the ubiquitous store-operated Ca2+ entry channel Orai1, global Ca2+ entry across the plasma membrane, and Ca2+ release from internal stores. However, disruption of endothelial barrier function by thrombin and histamine requires the Ca2+ sensor stromal interacting molecule-1 (STIM1), whereas sphingosine-1-phosphate-mediated enhancement of endothelial barrier function occurs independently of STIM1. We conclude that although STIM1 is required for GPCR-mediated disruption of barrier function, a causal link between GPCR-induced cytoplasmic Ca2+ increases and acute changes in barrier function is missing. Thus, the cytosolic Ca2+-induced endothelial contraction is a cum hoc fallacy that should be abandoned.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GAPDH antibody, Mouse monoclonal, clone GAPDH-71.1, purified from hybridoma cell culture
Sigma-Aldrich
Anti-ORAI1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Bovine Serum Albumin, fatty acid free, low endotoxin, lyophilized powder, BioReagent, suitable for cell culture, ≥96% (agarose gel electrophoresis)