Skip to Content
Merck
  • Application of MeCAT-Click labeling for protein abundance characterization of E. coli after heat shock experiments.

Application of MeCAT-Click labeling for protein abundance characterization of E. coli after heat shock experiments.

Journal of proteomics (2015-12-30)
Yide He, Diego Esteban-Fernández, Boris Neumann, Ulf Bergmann, Frank Bierkandt, Michael W Linscheid
ABSTRACT

In a proof of concept study, metal-coded affinity tags based on click chemistry (MeCAT-Click) were used to analyze the proteome of Escherichia coli (E. coli) in response to heat stress. This allows high labeling efficiency, high detection sensitivity, and multiplex capabilities, which are pivotal for its application to protein quantification. Two approaches are presented for relative quantification of differentially lanthanide-labeled proteins. The first approach uses isotope-labeling, where ESI-MS was utilized to quantify the differentially labeled proteins from different states of E. coli. With this approach, 14 proteins were found with changed abundance, among them five proteins upregulated. In the second approach, differentially labeled samples were separated by two dimensional gel electrophoresis (2-DE) and scanned by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Comparison of the signal intensities of the different lanthanides was used to quantify different sample states. Based on this information, ESI-MS was used to identify the proteins with different abundance. The sensitivity of LA-ICP-MS allowed us to find one upregulated protein that was nearly invisible by silver staining ("Probable replication endonuclease from retron EC67"). The advantage of this approach is to locate low abundant proteins with differential expression using LA-ICP-MS, which may be overlooked otherwise. This paper demonstrates the successful application of a novel metal labeling strategy to quantify the proteins from complex biological samples. In comparison with former metal labeling strategies, it reduces the steric hindrance and improves the labeling efficiency during the labeling process, which ensure its successful application. This methodology is compatible with both molecular and elemental mass spectrometry. ESI-MS/MS in combination with software-based search allows the identification and relative quantification of labeled proteins. In addition, LA-ICP-MS helps to locate the labeled proteins in 2-DE gels with superior detection capability, thus, target proteins with low abundance can be precisely followed. Its excellent sensitivity allows one to track the proteins of interest that are barely visible by silver staining.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CP-alkyne, ≥95%
Sigma-Aldrich
Piperazine diacrylamide, For acrylamide gel electrophoresis
Sigma-Aldrich
HMP-alkyne, ≥95%
Sigma-Aldrich
OxMet2-alkyne
Sigma-Aldrich
SuTEx1-alkyne, ≥95%