Skip to Content
Merck
  • Ligand-induced fate of embryonic species in the shape-controlled synthesis of rhodium nanoparticles.

Ligand-induced fate of embryonic species in the shape-controlled synthesis of rhodium nanoparticles.

ACS nano (2015-01-30)
Adam J Biacchi, Raymond E Schaak
ABSTRACT

The shapes of noble metal nanoparticles directly impact their properties and applications, including in catalysis and plasmonics, and it is therefore important to understand how multiple distinct morphologies can be controllably synthesized. Solution routes offer powerful capabilities for shape-controlled nanoparticle synthesis, but the earliest stages of the reaction are difficult to interrogate experimentally and much remains unknown about how metal nanoparticle morphologies emerge and evolve. Here, we use a well-established polyol process to synthesize uniform rhodium nanoparticle cubes, icosahedra, and triangular plates using bromide, trifluoroacetate, and chloride ligands, respectively. In all of these systems, we identified rhodium clusters with diameters of 1-2 nm that form early in the reactions. The colloidally stable metal cluster intermediates served as a stock solution of embryonic species that could be transformed predictably into each type of nanoparticle morphology. The anionic ligands that were added to the embryonic species determined their eventual fate, e.g., the morphologies into which they would ultimately evolve. Extensive high-resolution transmission electron microscopy experiments revealed that the growth pathway-monomer addition, coalescence, or a combination of the two-was different for each of the morphologies, and was likely controlled by the interactions of each specific anionic adsorbate with the embryonic species. Similar phenomena were observed for related palladium and platinum nanoparticle systems. These studies provide important insights into how noble metal nanoparticles nucleate, the pathways by which they grow into several distinct morphologies, and the imperative role of the anonic ligand in controlling which route predominates in a particular system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
Rhodium(II) trifluoroacetate dimer
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Triethylene glycol, ReagentPlus®, 99%
Sigma-Aldrich
Rhodium(III) chloride hydrate, 99.95% trace metals basis
Sigma-Aldrich
Rhodium(III) chloride hydrate, crystalline, ≥99.9% trace metals basis
Sigma-Aldrich
Rhodium(III) chloride hydrate, Rh 38-40 %
Sigma-Aldrich
Sodium trifluoroacetate, 98%
Sigma-Aldrich
Triethylene glycol, BioUltra, anhydrous, ≥99.0% (GC)
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
USP
Ethylene glycol, United States Pharmacopeia (USP) Reference Standard
Supelco
Water, ACS reagent, for ultratrace analysis
Supelco
Ethylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Sodium bromide, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%