Skip to Content
Merck
  • Distinctive recruitment of endogenous sleep-promoting neurons by volatile anesthetics and a nonimmobilizer.

Distinctive recruitment of endogenous sleep-promoting neurons by volatile anesthetics and a nonimmobilizer.

Anesthesiology (2014-07-25)
Bo Han, Hilary S McCarren, Dan O'Neill, Max B Kelz
ABSTRACT

Numerous studies demonstrate that anesthetic-induced unconsciousness is accompanied by activation of hypothalamic sleep-promoting neurons, which occurs through both pre- and postsynaptic mechanisms. However, the correlation between drug exposure, neuronal activation, and onset of hypnosis remains incompletely understood. Moreover, the degree to which anesthetics activate both endogenous populations of γ-aminobutyric acid (GABA)ergic sleep-promoting neurons within the ventrolateral preoptic (VLPO) and median preoptic nuclei remains unknown. Mice were exposed to oxygen, hypnotic doses of isoflurane or halothane, or 1,2-dichlorohexafluorocyclobutane (F6), a nonimmobilizer. Hypothalamic brain slices prepared from anesthetic-naive mice were also exposed to oxygen, volatile anesthetics, or F6 ex vivo, both in the presence and absence of tetrodotoxin. Double-label immunohistochemistry was performed to quantify the number of c-Fos-immunoreactive nuclei in the GABAergic subpopulation of neurons in the VLPO and the median preoptic areas to test the hypothesis that volatile anesthetics, but not nonimmobilizers, activate sleep-promoting neurons in both nuclei. In vivo exposure to isoflurane and halothane doubled the fraction of active, c-Fos-expressing GABAergic neurons in the VLPO, whereas F6 failed to affect VLPO c-Fos expression. Both in the presence and absence of tetrodotoxin, isoflurane dose-dependently increased c-Fos expression in GABAergic neurons ex vivo, whereas F6 failed to alter expression. In GABAergic neurons of the median preoptic area, c-Fos expression increased with isoflurane and F6, but not with halothane exposure. Anesthetic unconsciousness is not accompanied by global activation of all putative sleep-promoting neurons. However, within the VLPO hypnotic doses of volatile anesthetics, but not nonimmobilizers, activate putative sleep-promoting neurons, correlating with the appearance of the hypnotic state.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GAD67 Antibody, clone 1G10.2, clone 1G10.2, Chemicon®, from mouse
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
Sodium chloride solution, 5 M
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Tyramine, 98%, FG
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Tyramine, analytical standard
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)