Skip to Content
Merck
  • The hollow fibre model--facilitating anti-cancer pre-clinical pharmacodynamics and improving animal welfare.

The hollow fibre model--facilitating anti-cancer pre-clinical pharmacodynamics and improving animal welfare.

International journal of oncology (2006-11-08)
Marie Suggitt, Patricia A Cooper, Steven D Shnyder, Michael C Bibby
ABSTRACT

We describe a modified hollow fibre assay (HFA) for investigating the potential of novel molecules as pharmaceutical agents. In particular the assay provides drug/target interaction data that can facilitate the selection of lead compounds for further evaluation in more sophisticated solid tumour models, whilst successfully implementing the 3Rs - the 'replacement' 'refinement' and 'reduction' of animals. This more ethical and rapid approach to early drug development does not compromise on the validity, sensitivity, predictivity or efficacy of preclinical evaluation. We present novel data using the standard cross-linker mitomycin C (MMC) as a positive control, and two investigational DNA interactive molecules (C1311/ SJG-136). Tumour cells were seeded in fibres and implanted into mice. Following treatment with an intraperitoneal injection, fibres were excised and cells retrieved for pharmacodynamic analysis using the comet assay/fluorescence microscopy. Microscopy results revealed nuclear uptake and localisation within cytoplasmic organelles of HT29 colorectal adenocarcinoma cells following treatment with C1311 (150 mg/kg). Following treatment with SJG-136 (0.3 mg/kg) a 27.3% (p<0.001) DNA cross-linking (s.c.) effect was observed in the HL60 acute promyelocytic leukaemia cell line. DNA cross-linking effects of 55% (i.p) and 50% (s.c.) (p<0.005) were observed in the A549 lung carcinoma cell line following administration of MMC (6 mg/kg). These data are consistent with previous activity defined using solid tumour models, and support the use of the HFA for in vivo pharmacodynamic investigation whilst significantly reducing animal numbers and the influence of tumour growth on the welfare of mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Symadex, ≥98% (HPLC)