Skip to Content
Merck
  • Isolation and characterization of degradation products of citalopram and process-related impurities using RP-HPLC.

Isolation and characterization of degradation products of citalopram and process-related impurities using RP-HPLC.

Journal of separation science (2008-05-16)
Ramisetti Nageswara Rao, Ale Narasa Raju, Ramaram Narsimha
ABSTRACT

A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Diethylamine hydrochloride, ReagentPlus®, 99%
Sigma-Aldrich
Diethylamine hydrobromide, 98%
Supelco
Citalopram Related Compound A, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Diethylamine, ≥99.5%
Sigma-Aldrich
Diethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Diethylamine, purified by redistillation, 99.5%