Skip to Content
Merck
  • Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation.

Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation.

Neural plasticity (2016-03-12)
Daniela Bonini, Cristina Mora, Paolo Tornese, Nathalie Sala, Alice Filippini, Luca La Via, Marco Milanese, Stefano Calza, Gianbattista Bonanno, Giorgio Racagni, Massimo Gennarelli, Maurizio Popoli, Laura Musazzi, Alessandro Barbon
ABSTRACT

Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser(845) immediately after stress and of GluA2 Ser(880) 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser(880), suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-NMDAR2A Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse
Sigma-Aldrich
Anti-NMDAR1 Antibody, rabbit monoclonal, culture supernatant, clone 1.17.2.6, Chemicon®
Sigma-Aldrich
Anti-NMDAR 2B (984-1104) Rabbit pAb, lyophilized, Calbiochem®