Skip to Content
Merck
  • Interplay between the hinge region of iron sulphur protein and the Qo site in the bc1 complex - Analysis of Plasmodium-like mutations in the yeast enzyme.

Interplay between the hinge region of iron sulphur protein and the Qo site in the bc1 complex - Analysis of Plasmodium-like mutations in the yeast enzyme.

Biochimica et biophysica acta (2015-08-25)
Zehua Song, Jérôme Clain, Bogdan I Iorga, Cindy Vallières, Anaïs Lalève, Nicholas Fisher, Brigitte Meunier
ABSTRACT

The respiratory chain bc1 complex is central to mitochondrial bioenergetics and the target of antiprotozoals. We characterized a modified yeast bc1 complex that more closely resemble Plasmodium falciparum enzyme. The mutant version was generated by replacing ten cytochrome b Qo site residues by P. falciparum equivalents. The Plasmodium-like changes caused a major dysfunction of the catalytic mechanism of the bc1 complex resulting in superoxide overproduction and respiratory growth defect. The defect was corrected by substitution of the conserved residue Y279 by a phenylalanine, or by mutations in or in the vicinity of the hinge domain of the iron-sulphur protein. It thus appears that side-reactions can be prevented by the substitution Y279F or the modification of the iron-sulphur protein hinge region. Interestingly, P. falciparum - and all the apicomplexan - contains an unusual hinge region. We replaced the yeast hinge region by the Plasmodium version and combined it with the Plasmodium-like version of the Qo site. This combination restored the respiratory growth competence. It could be suggested that, in the apicomplexan, the hinge region and the cytochrome b Qo site have co-evolved to maintain catalytic efficiency of the bc1 complex Qo site.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Atovaquone, ≥98% (HPLC)
Sigma-Aldrich
Decylubiquinone, ≥97% (HPLC)