Skip to Content
Merck
  • Induced myogenic commitment of human chondrocytes via non-viral delivery of minicircle DNA.

Induced myogenic commitment of human chondrocytes via non-viral delivery of minicircle DNA.

Journal of controlled release : official journal of the Controlled Release Society (2015-01-03)
Jieun Hong, Eunjee A Lee, Eun-Seo Lee, Giyoung Jung, Hansaem Jeong, Hwajin Lee, Hyukjin Lee, Nathaniel S Hwang
ABSTRACT

Lineage conversion from one somatic cell type to another is an attractive approach for deriving specific therapeutic cell generation. In order to bypass inducing pluripotent stage, transdifferentiation/direct conversion technologies have been recently developed. We report the development of a direct conversion methodology in which cells are transdifferentiated through a plastic intermediate state induced by exposure to non-integrative minicircle DNA (MCDNA)-based reprogramming factors, followed by differentiation into myoblasts. In order to increase the MCDNA delivery efficiency, reprogramming factors were delivered into the chondrocytes via electroporation followed by poly (β-amino esters) (PBAE) transfection. We used this approach to convert human chondrocytes to myoblast, and with treatment of SB-431542, an inhibitor of the activin receptor-like kinase receptors, to enhance myogenic commitment. Differentiated cells exhibited expression of myogenic markers such as MyoD and Myog. This methodology for direct lineage conversion from chondrocytes to myoblast represents a novel non-viral Method to convert hard-to-transfect cells to other lineage.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Dytek® EP diamine, 98%
Sigma-Aldrich
1,3-Diaminopropane, ≥99%
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
USP
L-Proline, United States Pharmacopeia (USP) Reference Standard
SAFC
HEPES
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Supelco
L-Proline, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
HEPES
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture