Skip to Content
Merck
  • Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process.

Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process.

International journal of nanomedicine (2011-12-14)
Min-Soo Kim, Jeong-Soo Kim, Hee Jun Park, Won Kyung Cho, Kwang-Ho Cha, Sung-Joo Hwang
ABSTRACT

The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS) process. First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP) K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS), tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats. X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC(0→12h) of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively. The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Poly(ethylene glycol), tested according to Ph. Eur., 6,000
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Nicotinamide, ≥98% (HPLC), powder
Sigma-Aldrich
Nicotinamide, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Nicotinamide, ≥99.5% (HPLC)
Sigma-Aldrich
Nicotinamide, ≥98.5% (HPLC)
SAFC
Glycine
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Glycine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Glycine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Zinc sulfate heptahydrate, BioUltra, for molecular biology, 2.0 M in H2O