Skip to Content
Merck

Impact of linker length on the activity of PROTACs.

Molecular bioSystems (2010-10-06)
Kedra Cyrus, Marie Wehenkel, Eun-Young Choi, Hyeong-Jun Han, Hyosung Lee, Hollie Swanson, Kyung-Bo Kim
ABSTRACT

Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations, a small molecule-based novel technology termed "PROteolysis TArgeting ChimeraS (PROTACs)" has been developed, targeting proteins for degradation at the post-translational level. Despite the promising potential of PROTACs to serve as molecular probes of complex signaling pathways, their design has not been generalized for broad application. Here, we present the first generalized approach for PROTAC design by fine-tuning the distance between the two participating partner proteins, the E3 ubiquitin ligase and the target protein. As such, we took a chemical approach to create estrogen receptor (ER)-α targeting PROTACs with varying linker lengths and the loss of the ER in cultured cells was monitored via western blot and fluorometric analyses. We found a significant effect of chain length on PROTAC efficacy, and, in this case, the optimum distance between the E3 recognition motif and the ligand was a 16 atom chain length. The information gathered from this experiment may offer a generalizable PROTAC design strategy to further the expansion of the PROTAC toolbox, opening new possibilities for the broad application of the PROTAC strategy in the study of multiple signaling pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(S,R,S)-AHPC-PEG2-butyl CO2H, ≥95%
Sigma-Aldrich
Pomalidomide-C3-NH2 hydrochloride, ≥95%
Sigma-Aldrich
Pomalidomide-piperazine-propanoic acid, ≥95.0%
Sigma-Aldrich
Pomalidomide-C5-phosphoramidite
Sigma-Aldrich
Pomalidomide-C9-NH2 hydrochloride
Sigma-Aldrich
4-(Aminoethyl)-1-N-Boc-piperidine, ≥95.0%
Sigma-Aldrich
Pomalidomide-piperidine-carboxylic acid, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-Me-C5-COOH, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-CO-PEG1-C2-acid, ≥95%
Sigma-Aldrich
FBnG-C3-PEG1-C3-NH2 hydrochloride, ≥95%
Sigma-Aldrich
VH032-OH, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-alkyne-piperidine hydrochloride
Sigma-Aldrich
1-Piperazinecarboxylic acid, 4-(4-piperidinyl)-, 1,1-dimethylethyl ester, ≥98%
Sigma-Aldrich
6F,C5-Pomalidomide-4-piperidine-C1-piperazine hydrochloride
Sigma-Aldrich
Pomalidomide-PEG3-OH, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG6-Azide, ≥95%
Sigma-Aldrich
Pomalidomide-PEG4-Azide, ≥95%
Sigma-Aldrich
Pomalidomide-C3-CO2H, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG1-Alkyne, ≥95%
Sigma-Aldrich
Pomalidomide-PEG5-NH2 hydrochloride
Sigma-Aldrich
Pomalidomide-PEG5-Alkyne, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG2-NH2 hydrochloride, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG6-NH2 hydrochloride, ≥95%
Sigma-Aldrich
Pomalidomide-PEG6-butyl CO2H, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-C6-PEG3-butyl amine hydrochloride, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG6-butyl amine hydrochloride, ≥95%
Sigma-Aldrich
Pomalidomide-PEG2-NH2 hydrochloride, ≥95%
Sigma-Aldrich
(S,R,S)-AHPC-PEG5-Alkyne
Sigma-Aldrich
(S,R,S)-AHPC-PEG4-Alkyne
Sigma-Aldrich
C5-Pomalidomide-piperazine hydrochloride, ≥95%