Skip to Content
Merck
  • Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2017-07-12)
Alexander A Aksenov, Konstantin O Zamuruyev, Alberto Pasamontes, Joshua F Brown, Michael Schivo, Soraya Foutouhi, Bart C Weimer, Nicholas J Kenyon, Cristina E Davis
ABSTRACT

Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds.

MATERIALS
Product Number
Brand
Product Description

Supelco
SPME Fiber Assembly Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, for use with manual holder
Supelco
SPME Fiber Assembly Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), df 65 μm(PDMS/DVB, for use with autosampler, needle size 23 ga
Supelco
SPME fiber assortment kit 5, needle size 23 ga, for use with autosampler
Supelco
SPME fiber assortment kit 4, for use with autosampler, size 24 ga
Supelco
SPME fiber assortment kit 4, for use with autosampler, needle size 23 ga
Supelco
SPME fiber assortment kit 1, for use with autosampler, needle size 23 ga
Supelco
SPME fiber assortment kit 2, for use with autosampler, needle size 23 ga
Supelco
SPME Fiber Assembly Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), df 65 μm(PDMS/DVB, fused silica fiber, for use with manual holder, needle size 23 ga
Supelco
SPME StableFlex fiber assortment kit, for use with manual holder
Supelco
SPME fiber assortment kit 4, for use with manual holder, size 24 ga
Supelco
SPME Fiber Assembly Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assortment kit 2, for use with autosampler, size 24 ga
Supelco
SPME fiber assortment kit 2, for use with manual holder, needle size 24 ga
Supelco
SPME fiber assembly, Carbowax-Polyethylene Glycol (PEG) Coating, needle size 23 ga, df 60 μm(PEG, for use with autosampler
Supelco
SPME StableFlex fiber assortment kit, for use with autosampler, needle size 24 ga
Supelco
SPME Fiber Assembly Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 23 ga, PDMS/DVB StableFlex, for use with autosampler
Supelco
Carboxen® 569, glass TD tube, fritted, O.D. × L 1/4 in. × 3 1/2 in., preconditioned, pkg of 10 ea
Supelco
Magnetic Screw Cap for Headspace Vials, 18 mm thread, PTFE/silicone septum (white PTFE/tranparent blue silicone), septum thickness 1.3 mm, pkg of 100 ea
Supelco
Tenax® TA / Carboxen® 1018, glass TD tube, preconditioned, O.D. × L 1/4 in. × 3 1/2 in., Sealed with (Swagelok® End-Fittings), pkg of 10 ea
Supelco
ORBO 78 HBr on Carboxen® 564 specially cleaned (20/45), 400/200 mg, W,W,W separators, O.D. × L 6 mm × 110 mm, pkg of 25 ea
Supelco
ORBO 90 Carboxen® 564 (20/45), 160/80 mg, W,F,F separators, O.D. × L 6 mm × 75 mm, pkg of 25 ea, for analyte group MEK (methylethyl ketone)
Supelco
SPME fiber assortment kit 1, for use with autosampler, needle size 24 ga
Supelco
SPME fiber assortment kit 1, for use with manual holder, needle size 24 ga