Skip to Content
Merck
  • Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in KRAS-Mutant Lung Cancer.

Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in KRAS-Mutant Lung Cancer.

Cancer discovery (2016-05-08)
Hidenori Kitai, Hiromichi Ebi, Shuta Tomida, Konstantinos V Floros, Hiroshi Kotani, Yuta Adachi, Satoshi Oizumi, Masaharu Nishimura, Anthony C Faber, Seiji Yano
ABSTRACT

KRAS is frequently mutated in lung cancer. Whereas MAPK is a well-known effector pathway of KRAS, blocking this pathway with clinically available MAPK inhibitors is relatively ineffective. Here, we report that epithelial-to-mesenchymal transition rewires the expression of receptor tyrosine kinases, leading to differential feedback activation of the MAPK pathway following MEK inhibition. In epithelial-like KRAS-mutant lung cancers, this feedback was attributed to ERBB3-mediated activation of MEK and AKT. In contrast, in mesenchymal-like KRAS-mutant lung cancers, FGFR1 was dominantly expressed but suppressed by the negative regulator Sprouty proteins; MEK inhibition led to repression of SPRY4 and subsequent FGFR1-mediated reactivation of MEK and AKT. Therapeutically, the combination of a MEK inhibitor (MEKi) and an FGFR inhibitor (FGFRi) induced cell death in vitro and tumor regressions in vivo These data establish the rationale and a therapeutic approach to treat mesenchymal-like KRAS-mutant lung cancers effectively with clinically available FGFR1 and MAPK inhibitors. Adaptive resistance to MEKi is driven by receptor tyrosine kinases specific to the differentiation state of the KRAS-mutant non-small cell lung cancer (NSCLC). In mesenchymal-like KRAS-mutant NSCLC, FGFR1 is highly expressed, and MEK inhibition relieves feedback suppression of FGFR1, resulting in reactivation of ERK; suppression of ERK by MEKi/FGFRi combination results in tumor shrinkage. Cancer Discov; 6(7); 754-69. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 681.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human FGFR1 (1)