Skip to Content
Merck
  • Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile.

Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile.

Applied and environmental microbiology (2014-12-21)
Eric M Ransom, Craig D Ellermeier, David S Weiss
ABSTRACT

Fluorescent proteins are powerful reporters in biology, but most require O2 for chromophore maturation, making them inherently difficult to use in anaerobic bacteria. Clostridium difficile, a strict anaerobe with a genomic GC content of only 29%, is the leading cause of hospital-acquired diarrhea in developed countries, and new methods for studying this pathogen are sorely needed. We recently demonstrated that a cyan fluorescent protein called CFPopt that has been codon optimized for production in low-GC bacteria can be used to study protein localization in C. difficile provided the cells are fixed prior to exposure to air. We describe here a codon-optimized variant of mCherry (mCherryOpt) that exhibits faster acquisition of fluorescence and a better signal-to-noise ratio than CFPopt. We utilized mCherryOpt to construct plasmids for studying protein localization (pRAN473) and gene expression (pDSW1728) in C. difficile. Plasmid pRAN473 is an mCherryOpt fusion vector with a tetracycline-inducible promoter. To document its biological utility, we demonstrated septal localization of two cell division proteins, MldA and ZapA. Plasmid pDSW1728 is designed for cloning a promoter of interest upstream of mCherryOpt. As proof of principle, we studied the expression of the pdaV operon, which is required for lysozyme resistance. In confirmation and extension of previous reports, we found that expression of the pdaV operon requires the alternative sigma factor σ(v) and that induction by lysozyme is dose dependent and uniform across the population of lysozyme-treated cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Methanol, analytical standard
Supelco
Anhydrotetracycline hydrochloride, VETRANAL®, analytical standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Anhydrotetracycline hydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Anhydrotetracycline hydrochloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O