- Adenosine receptor expression in an experimental animal model of myocardial infarction with preserved left ventricular ejection fraction.
Adenosine receptor expression in an experimental animal model of myocardial infarction with preserved left ventricular ejection fraction.
Adenosine, a purine nucleoside and a "retaliatory metabolite" in ischemia, is ubiquitous in the body and increases 100-fold during ischemia. Its biological actions are mediated by four adenosine receptors (ARs): A(1), A(2A), A(2B) and A(3). The aim of this study was to determine possible myocardial alterations in AR expression in an experimental animal model of myocardial infarction (MI) with a preserved left ventricular (LV) ejection fraction. LV tissue was collected from sexually mature male farm pigs with MI (n = 6) induced by permanent surgical ligation of the left anterior descending coronary artery and from five healthy pigs (C). mRNA expression of A(1)R, A(2A)R, A(2B)R, A(3)R and TNF-α was determined by real-time PCR in tissue collected from border (BZ) and remote zones (RZ) of the infarcted area and from LV of C. BZ, RZ and samples of C were stained immunohistochemically to investigate A(3)R immunoreaction. After 4 weeks a different regulation of ARs was observed. A(1)R mRNA expression was significantly lower in the infarct regions than in controls (C = 0.75 ± 0.2, BZ = 0.05 ± 0.2, RZ = 0.07 ± 0.02 p = 0.0025, p = 0.0016, C vs. BZ and RZ, respectively). Conversely A(3)R was higher in infarct areas (C = 0.94 ± 0.2, BZ = 2.85 ± 0.5, RZ = 3.48 ± 1.0, p = 0.048 C vs. RZ). No significant differences were observed for A(2A)R (C = 1.58 ± 0.6, BZ = 0.42 ± 0.1, RZ = 1.37 ± 0.6) and A(2B)R (C = 1.66 ± 0.2, BZ = 1.54 ± 0.5, RZ = 1.25 ± 0.4). A(3)R expression was confirmed by immunohistochemical analysis and was principally localized in cardiomyocytes. TNF-α mRNA results were: C 0.41 ± 0.25; BZ 1.60 ± 0.19; RZ 0.17 ± 0.04. The balance between A(1)R and A(3)R as well as between A(2A)R and A(2B)R was consistent with adaptative retaliatory anti-ischemic adenosinergic changes in the infarcted heart with preserved LV function.