Skip to Content
Merck
  • Transformation of BALB/c-3T3 cells: III. Development of a co-culture clonal survival assay for quantification of chemical cytotoxicity in high-density cell cultures.

Transformation of BALB/c-3T3 cells: III. Development of a co-culture clonal survival assay for quantification of chemical cytotoxicity in high-density cell cultures.

Environmental health perspectives (1993-07-01)
E J Matthews
ABSTRACT

A co-culture clonal survival assay was developed to measure the cytotoxicity of test chemical treatments to BALB/c-3T3 cells because the standard clonal survival assay using 200 wild type (WT) cells frequently overestimates chemical cytotoxicity when compared with identical treatment doses in high-density cultures. The assay used co-cultures of 3.2 x 10(4) WT cells, the same seeding density used in the transformation assay, and 200 ouabain resistant (OUAr) cells. After a 48-hr test chemical treatment, co-cultured cells were fed with culture medium containing 4 mM ouabain. The test chemical was cytotoxic to an equal percentage of WT and OUAr cells. Ouabain treatments killed the remaining WT cells. Thus, OUAr cells surviving the test chemical treatment measured the relative cloning efficiency (RCE) of all treated cells in the high-density cell co-culture. The co-culture assay succeeded because metabolic cooperation at the OUAr locus was not detected in BALB/c-3T3 cells. Five chemicals induced comparable cytotoxic responses in both assays, including actinomycin D, 5-bromo-2'-deoxyuridine, N'-methyl-N-nitro-N'-nitrosoguanidine, dimethyl sulfoxide and sodium chloride. In contrast, chemical cytotoxic responses detected in the standard and co-culture assays differed by > or = 10-fold for 11-aminoundecanoic acid, benzo[a]pyrene, cytosine arabinoside, and 3-methyl-cholanthrene and differed by > 2-fold for 2-acetylaminofluorene and dimethylnitrosamine. Detection of 11-aminoundecanoic acid-induced transformation was shown to be dependent on selecting treatment doses from the co-culture assay data. Thus, this method permits more accurate assessment of both chemical-induced cytotoxicity and transformation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
11-Aminoundecanoic acid, 97%