Direkt zum Inhalt
Merck
  • Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats.

Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats.

The international journal of neuropsychopharmacology (2017-02-06)
Gisela Borges, Cristina Miguelez, Fani Neto, Juan Antonio Mico, Luisa Ugedo, Esther Berrocoso
ZUSAMMENFASSUNG

There is increasing evidence suggesting that the Locus Coeruleus plays a role in pain-related anxiety. Indeed, we previously found that prolonged arthritis produces anxiety-like behavior in rats, along with enhanced expression of phosphorylated extracellular signal-regulated kinase 1/2 (a marker of plasticity) in the Locus Coeruleus. However, it is unknown how this effect correlates with the electrophysiological activity of Locus Coeruleus neurons or pain-related anxiety. Using the complete Freund's adjuvant model of monoarthritis in male Sprague-Dawley rats, we studied the behavioral attributes of pain and anxiety as well as Locus Coeruleus electrophysiology in vivo 1 (MA1W) and 4 weeks (MA4W) after disease induction. The manifestation of anxiety in MA4W was accompanied by dampened tonic Locus Coeruleus activity, which was coupled to an exacerbated evoked Locus Coeruleus response to noxious stimulation of the inflamed and healthy paw. When a mitogen-activating extracellular kinase inhibitor was administered to the contralateral Locus Coeruleus of MA4W, the phosphorylated extracellular signal-regulated kinase 1/2 levels in the Locus Coeruleus were restored and the exaggerated evoked response was blocked, reversing the anxiogenic-like behavior while pain hypersensitivity remained unaltered. As phosphorylated extracellular signal-regulated kinase 1/2 blockade in the Locus Coeruleus relieved anxiety and counteracted altered LC function, we propose that phosphorylated extracellular signal-regulated kinase 1/2 activation in the Locus Coeruleus plays a crucial role in pain-related anxiety.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
SL327, ≥98% (HPLC), Mixture of E & Z isomers, solid