Direkt zum Inhalt
Merck
  • Immunological change in a parasite-impoverished environment: divergent signals from four island taxa.

Immunological change in a parasite-impoverished environment: divergent signals from four island taxa.

PloS one (2007-09-20)
Jon S Beadell, Colm Atkins, Erin Cashion, Michelle Jonker, Robert C Fleischer
ZUSAMMENFASSUNG

Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Lektin aus Phaseolus vulgaris (rote Kidneybohne), Phytohemagglutinin PHA-P, BioXtra, purified by affinity chromatography, lyophilized powder