Direkt zum Inhalt
Merck

A qualitative method for prediction of amine oxidation in methanol and water.

Journal of pharmaceutical sciences (2015-02-26)
Carina Bäcktorp, Eivor Örnskov, Emma Evertsson, Johan Remmelgas, Anders Broo
ZUSAMMENFASSUNG

We have developed a predictive method, based on quantum chemical calculations, that qualitatively predicts N-oxidation by hydrogen peroxides in drug structures. The method uses linear correlations of two complementary approaches to estimate the activation barrier without calculating it explicitly. This method can therefore be automated as it avoids demanding transition state calculations. As such, it may be used by chemists without experience in molecular modeling and provide additional understanding to experimental findings. The predictive method gives relative rates for N,N-dimethylbenzylamine and N-methylmorpholine in good agreement with experiments. In water, the experimental rate constants show that N,N-dimethylbenzylamine is oxidized three times faster than N-methylmorpholine and in methanol it is two times faster. The method suggests it to be two and five times faster, respectively. The method was also used to correlate experimental with predicted activation barriers, linear free-energy relationships, for a test set of tertiary amines. A correlation coefficient R(2) = 0.74 was obtained, where internal diagnostics in the method itself allowed identification of outliers. The method was applied to four drugs: caffeine, azelastine, buspirone, and clomipramine, all possessing several nitrogens. Both overall susceptibility and selectivity of oxidation were predicted, and verified by experiments.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Trifluoressigsäure, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoressigsäure, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Wasserstoffperoxid -Lösung, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Wasserstoffperoxid -Lösung, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Trifluoressigsäure, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Wasserstoffperoxid -Lösung, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Supelco
Koffein, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%