Direkt zum Inhalt
Merck
  • Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds.

Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds.

Journal of chromatography. A (2015-01-17)
M T Ubeda-Torres, C Ortiz-Bolsico, M C García-Alvarez-Coque, M J Ruiz-Angel
ZUSAMMENFASSUNG

In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Triethylamin, ≥99.5%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Triethylamin, ≥99%
Sigma-Aldrich
Natriumphosphat, BioReagent, for molecular biology, anhydrous, ≥98%
Sigma-Aldrich
Triethylamin, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Triethylamin, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Natriumphosphat, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Natriumphosphat, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0% (titration)
Sigma-Aldrich
Natriumphosphat monobasisch -Lösung, BioUltra, 5 M in H2O
Sigma-Aldrich
1-Butyl-3-methylimidazoliumtetrafluorborat, ≥98%
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
1-Ethyl-3-methylimidazoliumchlorid, 98%
Sigma-Aldrich
N,N-Dimethyloctylamin, 95%
Sigma-Aldrich
Atenolol, ≥98% (TLC), powder
Sigma-Aldrich
1-Butyl-3-methylimidazoliumtetrafluorborat, ≥97.0% (HPLC)
Sigma-Aldrich
1-Ethyl-3-methylimidazoliumtetrafluorborat, ≥98% (HPLC)
Sigma-Aldrich
Natriumphosphat, anhydrous, free-flowing, Redi-Dri, ≥99.0%
Sigma-Aldrich
Natriumphosphat, purum p.a., anhydrous, ≥99.0% (T)
Sigma-Aldrich
Acetonitril, ReagentPlus®, 99%
Sigma-Aldrich
Triethylamin, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Natriumphosphat, BioXtra, ≥99.0%
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis