Direkt zum Inhalt
Merck
  • Comparative analysis of gene expression in normal and degenerative human tendon cells: effects of cyclic strain.

Comparative analysis of gene expression in normal and degenerative human tendon cells: effects of cyclic strain.

Foot & ankle international (2014-06-25)
Woo Jin Choi, Min Sung Park, Kwang Hwan Park, Jean-Paul Courneya, Jin Sun Cho, Lew C Schon, Jin Woo Lee
ZUSAMMENFASSUNG

Tendinopathy is a clinical problem for which treatment shows mixed results and treatment options are limited. Gene expression signatures early in the mechanotransduction pathway can accurately predict risk and correlate with different clinical outcomes. Studies aimed at elucidating the molecular mechanisms of tendinopathy have focused on small cohorts of genes that show an incomplete picture of the degeneration process. This study compared the effect of cyclic strain on gene expression in tendon cells from normal tendon and chronically painful areas of tendinopathy in 3 patients. We measured a panel of mechanotransduction genes and cytoskeletal tensional balance with and without cyclic strain, which disrupts connective tissue synthetic-degradative equilibrium. Normal and degenerative tendons were obtained from patients undergoing surgery to treat chronic painful tendinopathy. A cyclic strain model was established to measure cytoskeletal tensional homeostasis. Prior to cyclic strain, the normal tendon cells exhibited varying patterns of elevated expression of 7 genes compared with degenerative tendon cells. In response to cyclic strain, gene expression of COL1A1, ITGA6, CTNNA1, and CLEC3B was up-regulated in normal tendon cells. Cyclic strain had no effect on degenerative tendon cells. Cyclic strain exacerbated the inhibition of protein synthesis in both cell types, especially in the degenerative tendon cells. Alterations in the pattern of gene expression are suggestive of a dynamic equilibrium between synthesis and degradation, whereby cell adhesion molecules are predominantly up-regulated to facilitate cellular reorientation in response to their altered functional environment. These data might have future applications, including the identification of markers for early diagnosis, targets for drug design, and indicators for treatment responsiveness and prognosis.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, for molecular biology
Sigma-Aldrich
Dimethylsulfoxid, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥98.5% (GC)
Sigma-Aldrich
Aprotinin aus Rinderlunge, saline solution, 3-7 TIU/mg protein
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Natriumorthovanadat, ≥90% (titration)
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥99.0% (T)
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
Natriumorthovanadat, 99.98% trace metals basis
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
USP
Dimethylsulfoxid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethylsulfoxid, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyren-1,3,6-Trisulfonsäure Trinatriumsalz, suitable for fluorescence, ≥90% (HPCE)
Supelco
Dimethylsulfoxid, analytical standard
Supelco
Dimethylsulfoxid, for inorganic trace analysis, ≥99.99995% (metals basis)
Dimethylsulfoxid, European Pharmacopoeia (EP) Reference Standard