Direkt zum Inhalt
Merck
  • Microwave-assisted steam distillation for simple determination of polychlorinated biphenyls and organochlorine pesticides in sediments.

Microwave-assisted steam distillation for simple determination of polychlorinated biphenyls and organochlorine pesticides in sediments.

Analytical chemistry (2003-03-28)
Masahiko Numata, Takashi Yarita, Yoshie Aoyagi, Akiko Takatsu
ZUSAMMENFASSUNG

A novel sample extraction technique for polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) analysis using microwave-heating device is developed. In this study, microwave-assisted extraction (MAE) and steam distillation techniques were combined. Desorption of the anatytes from solid matrixes was accelerated with water vapor which was generated by microwave irradiation. A sample holder in a commercial microwave extraction cell kept the sample from direct contact with the organic solvent for analytes trapping during the treatment process. Therefore, relatively clean extracts were obtained with small amount of solvents. Without any cleanup steps, the obtained extract could be analyzed with gas chromatograph/mass spectrometers (GC/MS). Six PCB congeners (PCB15, 28, 70, 101, 180, 194, 209) and three OCPs (gamma-HCH, 4,4'-DDE, 4,4'-DDD) in two marine sediment samples (a sediment collected from a bay of Kyusyu Island, Japan, and a certified reference material NIST SRM1944) were analyzed by using this microwave-assisted steam distillation (MASD) technique and another extraction method (exhaustive steam distillation, MAE, and Soxhlet extraction); and comparisons of the results are shown in this report. Although recovery yields of highly chlorinated biphenyls (PCB180, 194, 209) and relatively polar OCPs (gamma-HCH, 4,4'-DDD) were low (30-60%) compared with other analytes (PCB15, 28, 70, 101, 4,4'-DDE; recovery, 80-100%), use of isotope labeled internal standards for the MASD technique gave comparable results with the values obtained by other extraction methods and the certified values in the samples.