- Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements.
Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements.
We studied the rotational Brownian motions of myosin heads, of which the sulfhydryl group was selectively labeled with the triplet probe 5-eosinylmaleimide, in myofibril by using flash-induced phosphorescence anisotropy decay measurements. The anisotropy decay curve under relaxing conditions consisted of a fast (submicrosecond) and a slow (a few microseconds) component and a small constant part as in the synthetic myosin filaments in solution. The decay curves could be analyzed by assuming that a head part, i.e. subfragment 1 (S1), wobbles in the first cone and a part connecting S1 and the tail of a myosin molecule of which the length is shorter than subfragment 2 (S2) wobbles in the second cone (a double-cone model); the semiangles of the former and the latter cones were about 30 degrees and 50 degrees, respectively. The rotational freedom of myosin heads was only slightly restricted by the limited space of the filament lattice in myofibrils. Under rigor conditions, no motion of myosin heads was observed in the 10-microseconds time scale.