Direkt zum Inhalt
Merck

Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1.

Structure (London, England : 1993) (2019-08-06)
Hua Jin, Yong-Liang Jiang, Feng Yang, Jun-Tao Zhang, Wei-Fang Li, Ke Zhou, Jue Ju, Yuxing Chen, Cong-Zhao Zhou
ZUSAMMENFASSUNG

Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexancarboxylat