Direkt zum Inhalt
Merck
  • Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats.

Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats.

Neuroscience (2012-07-24)
J Zhang, Q Shi, P Yang, X Xu, X Chen, C Qi, J Zhang, H Lu, B Zhao, P Zheng, P Zhang, Y Liu
ZUSAMMENFASSUNG

Exogenous delivery of the neurotrophin-3 (NT-3) gene may provide a potential therapeutic strategy for ischemic stroke. To investigate the neuroprotective effects of NT-3 expression controlled by 5HRE after focal cerebral ischemia, we constructed a recombinant retrovirus vector (RV) with five copies of hypoxia-responsive elements (5HRE or 5H) and NT-3 and delivered it to the rat brain. Three groups of rats received RV-5H-NT3, RV-5H-EGFP or saline injection. Three days after gene transfer, the rats underwent 90min of transient middle cerebral artery occlusion (tMCAO), followed by 1-28days of reperfusion. Three days after tMCAO, brain NT-3 expression was significantly increased in the RV-5H-NT3-transduced animals compared with the RV-5H-EGFP or saline group, and brain infarct volume was smaller in the RV-5H-NT3-transduced group than the RV-5H-EGFP or saline group. The percentage of TUNEL-positive cells was reduced in RV-5H-NT3-transduced brains compared with the RV-5H-EGFP or saline group 3 and 7days after tMCAO. Furthermore, the neurological status of RV-5H-NT3-transduced rats was better than that of RV-5H-EGFP- or saline-transduced animals from 1day to 4weeks after tMCAO. Our results demonstrated that 5HRE could modulate NT-3 expression in the ischemic brain environment and that the up-regulated NT-3 could effectively improve neurological status following tMCAO due to decreased initial damage. To avoid unexpected side effects, 5HRE-controlled gene expression might be a useful tool for gene therapy of ischemic disorders in the central nervous system.