Skip to Content
Merck
  • Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

Journal of agricultural and food chemistry (2015-08-11)
JianCai Zhu, Feng Chen, LingYing Wang, YunWei Niu, Dan Yu, Chang Shu, HeXing Chen, HongLin Wang, ZuoBing Xiao
ABSTRACT

The aroma profile of oolong tea infusions (Dongdingwulong, DDWL; Tieguanyin, TGY; Dahongpao, DHP) were investigated in this study. Gas chromatography-olfactometry (GC-O) with the method of aroma intensity (AI) was employed to investigate the aroma-active compounds in tea infusions. The results presented forty-three, forty-five, and forty-eight aroma-active compounds in the TGY, DHP, and DDWL infusions, including six, seven, and five sulfur compounds, respectively. In addition, the concentration of volatile compounds in the tea infusions was further quantitated by solid phase microextraction-gas chromatography (SPME)-GC-MS and SPME-GC-flame photometric detection (FPD). Totally, seventy-six and thirteen volatile and sulfur compounds were detected in three types of tea infusions, respectively. Quantitative results showed that forty-seven aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), 2-methylpropanal (OAV: 230-455), 3-methylbutanal (1-353), 2-methylbutanal (34-68), nerolidol (108-184), (E)-2-heptenal (148-294), hexanal (134-230), octanal (28-131), β-damascenone (29-59), indole (96-138), 6-methyl-5-hepten-2-one (34-67), (R)-(-)-linalool (63-87), and dimethyl sulfide (7-1320) presented relatively higher OAVs than those of other compounds, indicating the importance of these compounds in the overall aroma of tea infusions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Heptanoic acid, natural, FG
Sigma-Aldrich
Hexanal, ≥97%, FCC, FG
Sigma-Aldrich
2-Nonanone, ≥99%
Sigma-Aldrich
Sulfur, 99.998% trace metals basis
Sigma-Aldrich
Methyl benzoate, ≥98%, FCC, FG
Sigma-Aldrich
Heptanoic acid, 97%, FG
Sigma-Aldrich
Hexyl alcohol, FCC, FG
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Sulfur, powder, 99.98% trace metals basis
Sigma-Aldrich
trans-2-Octenal, ≥95%, stabilized, FG
Sigma-Aldrich
Acetaldehyde, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimethyl sulfide, anhydrous, ≥99.0%
Sigma-Aldrich
Hexanal, natural, ≥95%, FG
Sigma-Aldrich
Isobutyraldehyde, redistilled, ≥99.5%
Sigma-Aldrich
Isobutyraldehyde, ≥98%, FG
Sigma-Aldrich
Phenethyl alcohol, ≥99%, FCC, FG
Sigma-Aldrich
Dimethyl disulfide, ≥98%, FG
Sigma-Aldrich
1-Heptanol, 98%
Sigma-Aldrich
2-Methylfuran, contains 200-400 BHT as stabilizer, 99%
Sigma-Aldrich
Dimethyl disulfide, ≥99%
Sigma-Aldrich
Methyl jasmonate, 95%
Sigma-Aldrich
Heptanoic acid, 96%
Sigma-Aldrich
Phenethyl alcohol, natural, ≥99%, FCC, FG
Sigma-Aldrich
Methyl jasmonate, ≥98%, stabilized, FG
Sigma-Aldrich
Isobutyraldehyde, natural, 96%, FG
Sigma-Aldrich
Dimethyl trisulfide, ≥98%, FG
Sigma-Aldrich
trans-2-Hexen-1-al, ≥95%, FCC, FG
Sigma-Aldrich
2,3,5-Trimethylpyrazine, ≥99%, FCC, FG
Sigma-Aldrich
Dimethyl sulfide, ≥99%
Sigma-Aldrich
trans-2-Octenal, technical grade, 94%