Skip to Content
Merck
  • Role of adenosine receptors in resveratrol-induced intraocular pressure lowering in rats with steroid-induced ocular hypertension.

Role of adenosine receptors in resveratrol-induced intraocular pressure lowering in rats with steroid-induced ocular hypertension.

Clinical & experimental ophthalmology (2014-07-06)
Norhafiza Razali, Renu Agarwal, Puneet Agarwal, Sunil Kumar, Minaketan Tripathy, Sushil Vasudevan, Jonathan G Crowston, Nafeeza M Ismail
ABSTRACT

Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol. The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction. All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR. Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.

MATERIALS
Product Number
Brand
Product Description

Supelco
Resveratrol, analytical standard
Sigma-Aldrich
2-Pyrrolidinone, ≥99%
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Resveratrol, ≥99% (HPLC)
Sigma-Aldrich
2-Pyrrolidinone, purum, ≥98.0% (GC)
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
2-Pyrrolidinone, 99%
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
Supelco
Resveratrol, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Resveratrol, European Pharmacopoeia (EP) Reference Standard
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
Pyrrolidone, European Pharmacopoeia (EP) Reference Standard