Skip to Content
Merck
  • Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.

Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.

Journal of biomedical materials research. Part A (2013-11-30)
Chaganti Srinivasa Reddy, Jayarama Reddy Venugopal, Seeram Ramakrishna, Eyal Zussman
ABSTRACT

Polycaprolactone (PCL), a synthetic biocompatible and biodegradable polymer generally used as a scaffold material for tissue engineering applications. The high stiffness and hydrophobicity of the PCL fiber mesh does not provide significant cell attachment and proliferation in cardiac tissue engineering. Towards this goal, the study focused on a compound of PCL and oligomer hydrogel [Bisphenol A ethoxylated dimethacrylate (BPAEDMA)] processed into electrospun nanofibrous scaffolds. The composition, morphology and mechanical properties of the compound scaffolds, composed of varying ratios of PCL and hydrogel were characterized by scanning electron microscopy, infrared spectroscopy and dynamic mechanical analyzer. The elastic modulus of PCL/BPAEDMA nanofibrous scaffolds was shown to be varying the BPAEDMA weight fraction and was decreased by increasing the BPAEDMA weight fraction. Compound fiber meshes containing 75 wt % BPAEDMA oligomer hydrogel exhibited lower modulus (3.55 MPa) and contact angle of 25(o) . Rabbit cardiac cells cultured for 10 days on these PCL/BPAEDMA compound nanofibrous scaffolds remained viable and expressed cardiac troponin and alpha-actinin proteins for the normal functioning of myocardium. Cell adhesion and proliferations were significantly increased on compound fiber meshes containing 75 wt % BPAEDMA, when compared with other nanofibrous scaffolds. The results observed that the produced PCL/BPAEDMA compound nanofibrous scaffolds promote cell adhesion, proliferation and normal functioning of cardiac cells to clinically beneficial levels, relevant for cardiac tissue engineering.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Chloroform, analytical standard
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer