Skip to Content
Merck

Boron nitride nanotubes and nanosheets.

ACS nano (2010-05-14)
Dmitri Golberg, Yoshio Bando, Yang Huang, Takeshi Terao, Masanori Mitome, Chengchun Tang, Chunyi Zhi
ABSTRACT

Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Boron nitride, nanopowder, <150 nm avg. part. size (TEM), 99% trace metals basis
Sigma-Aldrich
Boron nitride, powder, ~1 μm, 98%