Skip to Content
Merck

In vitro metabolism of aromatic nitriles.

Journal of pharmaceutical sciences (1994-12-01)
B Markus, C H Kwon
ABSTRACT

Studies on the metabolic fate of aromatic nitriles, in contrast to their aliphatic counterparts, have been minimal and the subject of controversy. The in vitro metabolic fate of several aromatic nitriles with varying substituents was investigated by using rat liver subcellular fractions, with a particular emphasis on the nitrile moiety. Benzonitriles and 4-cyanophenols underwent oxidative metabolism to produce ring-hydroxylated metabolites. On the other hand, 2-cyanophenol was resistant to metabolism. o-Tolunitrile was metabolized and produced o-cyanobenzyl alcohol and phthalide. Phthalide, however, was chemically derived from o-cyanobenzyl alcohol, the initial metabolite. 4-Nitrobenzonitrile was resistant to oxidation on the ring, but was readily reduced to the corresponding amine metabolite under both aerobic and anaerobic conditions. Nitroxynil (3-iodo-4-hydroxy-5-nitrobenzonitrile) was metabolized to produce 3-iodo-4-hydroxy-5-nitrobenzamide and 3-iodo-4-hydroxy-5-nitrobenzoic acid. The enzyme(s) responsible for this hydrolytic metabolism was primarily localized in the cytosol. Among the nitriles tested, o-tolunitrile and nitroxynil produced metabolites in which the nitrile moiety was modified. Nitroxynil, however, was the only compound that was directly metabolized on the nitrile moiety by the rat liver enzyme(s).

MATERIALS
Product Number
Brand
Product Description

Supelco
Nitroxinil, VETRANAL®, analytical standard
Sigma-Aldrich
4-Nitrobenzonitrile, 97%
Sigma-Aldrich
4-Cyanophenol, 95%