- Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants.
Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants.
Two most commonly used dithiocarbamate (DTC) pesticides, dimethyldithiocarbamate (DMDTC) and diethyldithiocarbamate (DEDTC), were examined in this study to evaluate their potential to form nitrosamines when in contact with various water disinfection oxidants. Results show that DTCs can serve as nitrosamine precursors, by release of secondary amines through hydrolysis or through reactions with oxidants. The reactions of DTCs with monochloramine and ozone were found to be particularly problematic in the risk of generating nitrosamines, though all four tested oxidants, including free chlorine and chlorine dioxide, formed nitrosamines. NDEA yield from DEDTC was lower, by different degrees, than NDMA yield from DMDTC for all four oxidants, which was attributed to the steric hindrance associated with bulkier reaction intermediate that are more difficult to be further oxidized to form nitrosamine. The yield of nitrosamines increased with the oxidant dosage for both monochloramination and ozonation of DTCs. Results for nitrosamine formation from DTCs at varying pH were found to be consistent with the pH trend of nitrosamine formation from ozonation and monochloramination of secondary amines. Kinetic study results and identification and quantification of reaction products suggest that the DTCs were not significant direct precursors of nitrosamines during monochloramination or ozonation, but rather nitrosamines formed were primarily from reaction of oxidants with the amine which may be generated either through hydrolysis or through oxidation of DTCs.