Skip to Content
Merck
  • Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin.

Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin.

Analytica chimica acta (2012-02-07)
David R Kryscio, Nicholas A Peppas
ABSTRACT

Molecularly imprinted polymers are synthetic antibody mimics formed by the crosslinking of organic or inorganic polymers in the presence of an analyte which yields recognitive polymer networks with specific binding pockets for that biomolecule. Surface imprinted polymers were synthesized via a novel technique for the specific recognition of bovine serum albumin (BSA). Thin films of recognitive networks based on 2-(dimethylamino)ethyl methacrylate (DMAEMA) as the functional monomer and varying amounts of either N,N'-methylenebisacrylamide (MBA) or poly(ethylene glycol) (400) dimethacrylate (PEG400DMA) as the crosslinking agent were synthesized via UV free-radical polymerization and characterized. A clear and reproducible increase in recognition of the template BSA was demonstrated for these systems at 1.6-2.5 times more BSA recognized by the MIP sample relative to the control polymers. Additionally, these polymers exhibited selective recognition of the template relative to competing proteins with up to 2.9 times more BSA adsorbed than either glucose oxidase or bovine hemoglobin. These synthetic antibody mimics hold significant promise as the next generation of robust recognition elements in a wide range of bioassay and biosensor applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N,N′-Methylenebisacrylamide solution, suitable for electrophoresis, 2% in H2O
Sigma-Aldrich
N,N′-Methylenebisacrylamide, powder, for molecular biology, suitable for electrophoresis, ≥99.5%
Sigma-Aldrich
N,N′-Methylenebisacrylamide, suitable for electrophoresis (after filtration or allowing insolubles to settle)
Sigma-Aldrich
N,N′-Methylenebis(acrylamide), 99%
Sigma-Aldrich
2-(Dimethylamino)ethyl methacrylate, contains 700-1000 ppm monomethyl ether hydroquinone as inhibitor, 98%