Skip to Content
Merck
  • Genome plasticity in Paramecium bursaria revealed by population genomics.

Genome plasticity in Paramecium bursaria revealed by population genomics.

BMC biology (2020-12-01)
Yu-Hsuan Cheng, Chien-Fu Jeff Liu, Yen-Hsin Yu, Yu-Ting Jhou, Masahiro Fujishima, Isheng Jason Tsai, Jun-Yi Leu
ABSTRACT

Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Agarose, low gelling temperature, BioReagent, for molecular biology
Sigma-Aldrich
TRI Reagent®, For processing tissues, cells cultured in monolayer or cell pellets
Roche
PCR DIG Probe Synthesis Kit, sufficient for 25 reaction (50 μL final reaction volume)
Sigma-Aldrich
Agarose, For pulsed field electrophoresis running gel
Roche
Anti-Digoxigenin-AP, Fab fragments, from sheep